

Capacity Planning and Scheduling for Semi-Urgent Surgeries at a Neurosurgery Department

Maartje E. Zonderland^{1,2} Richard J. Boucherie¹

Department of Applied Mathematics, University of Twente
 Leiden University Medical Center

Background

- Surgical department
- Three surgery types:
 - → Elective
 - → Urgent
 - → Semi-urgent
- Urgent: within 24 hours
- Semi-urgent: within one or two weeks
- Consider only regular opening hours of OR complex

Motivation

- (Semi-)Urgent surgeries pose an uncertain demand on resources
- Urgent surgeries usually performed in overtime or at separate OR
 → do not take into account here
- Semi-urgent surgeries may not be performed in overtime
 → allocate part of regular OR time to semi-urgent surgeries

 Focus research on capacity allocation and planning for semi-urgent surgeries

Case - Introduction

- Case to illustrate modeling approach
- Neurosurgery department
- 8 OR sessions per week
- 40% of all incoming surgeries is classified semi-urgent

 Question 1: how much OR time should the neurosurgery department allocate to semi-urgent surgeries?

OR Capacity Planning (I)

- Slotted approach
- Each OR session has a duration of 3 slots
- Expected surgery duration is either 1, 2, or 3 slots
- Total # of slots available (M) = # of OR sessions x 3
- Allocate fraction (S) of M to semi-urgent slots

OR Capacity Planning (II)

- Note that
 - → # of canceled elective slots (N_{CE}) depends on S
 - → # of empty OR slots (N_{ES}) depends on S

OR Capacity Planning (III)

- Note that
 - \rightarrow # of canceled elective slots (N_{CE}) depends on S
 - → # of empty OR slots (N_{ES}) depends on S

OR Capacity Planning (IV)

- Use slotted queuing model to determine E[N_{CE}] and E[N_{ES}] for each S
- Assign cost C_{CE} to 1 canceled elective slot
- Assign cost C_{ES} to 1 empty OR slot

OR Capacity Planning (V)

- Find S* that minimizes Expected Total Cost: $E[C_T] = E[N_{CE}]^*C_{CE} + E[N_{ES}]^*C_{ES}$
- S* is the optimal number of slots to allocate to semi-urgent surgeries, given $C_{\it CE}$ and $C_{\it ES}$

Case – Capacity Planning (I)

- Total # of slots available (M) = 8 x 3 = 24
- On average 5.5 semi-urgent surgeries arrive each week
- P(1 slot surgery) = 53%
- P(2 slot surgery) = 20%
- P(3 slot surgery) = 27%
- S_{min} = expected # of semi-urgent slot arrivals = 9.6 slots
 → at least 10 slots required for stability

Case – Capacity Planning (II)

- Number of canceled elective slots
- Number of empty semi-urgent slots

Case - Capacity Planning (III)

Note that value of optimal S* depends on choice for C_{CE} and C_{ES}

• For
$$CC_1$$
: $C_{CE} = 1$, $C_{ES} = 1$
 $\Rightarrow S^* = 13$

• For
$$CC_2$$
: $C_{CE} = 1$, $C_{ES} = 10$
 $\Rightarrow S^* = 11$

• For
$$CC_3$$
: $C_{CE} = 10$, $C_{ES} = 1$
 $\Rightarrow S^* = 17$

Note that S* > S_{min} in all cases!

Case - Capacity Planning (IV)

OR Scheduling (I)

- We now have determined the amount of OR time to dedicate to semi-urgent surgeries (S*)
- Two types of semi-urgent surgeries:
 - → within one week
 - → within two weeks
- Schedule one week semi-urgent surgeries this week
- Two week semi-urgent surgeries can be postponed for one week
- Question 2: Now that we know S*, when should we schedule two week semi-urgent surgeries?

OR Scheduling (II)

 Question 2: Now that we know S*, when should we schedule two week semi-urgent surgeries?

Only up to S*?

OR Scheduling (III)

- Question 2: Now that we know S*, when should we schedule two week semi-urgent surgeries?
- Or more?
- Drawback: canceling of elective slots

OR Scheduling (IV)

- Question 2: Now that we know S*, when should we schedule two week semi-urgent surgeries?
- Risk of postponement: 1 week surgeries in overtime

OR Scheduling (V)

- Develop Markov decision model
- Determine for each state (possible combination of one and two week slots present) an action (how many two week slots to plan this week)
- Use S* calculated with queuing model
- Introduce additional costs for overflow of semi-urgent slots
- Minimize expected total discounted costs

Case – OR Scheduling (I)

- Trivial problem?
- More than 1000 states for our case!
- Simplifies scheduling job
- Consider S* = 13, S* = 11, S* = 17 (optimal S for CC₁, CC₂ and CC₃)
- Graphic representation of strategies

Case – OR Scheduling (II)

•
$$S^* = 13$$

Case – OR Scheduling (III)

•
$$S^* = 11$$

Case – OR Scheduling (IV)

•
$$S^* = 17$$

Conclusion

- Use queuing model to determine amount of OR time to allocate to semi-urgent surgeries
 - → dangerous to focus only on average behavior
- Use Markov decision model to decide upon actual scheduling
 - → simplifies scheduling job
- Mathematical modeling approach allows for numerical comparison of alternative solutions

Questions?